FAOs \& their solutions for Module 2:

Simple Solutions of the one-dimensional Schrodinger Equation

Question1: Determine the energy levels and the corresponding Eigen functions of a particle of mass μ in a one dimensional infinitely deep potential well characterized by the following potential energy variation

$$
\begin{align*}
V(x) & =0 \text { for } 0<x<a \\
& =\infty \text { for } \quad x<0 \text { and for } x>a \tag{1}
\end{align*}
$$

Solution 1: For $0<x<a$, the one dimensional Schrödinger equation becomes

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi(x)=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
k^{2}=\frac{2 \mu E}{\hbar^{2}} \tag{3}
\end{equation*}
$$

The general solution of the Schrödinger equation is

$$
\begin{equation*}
\psi(x)=A \sin k x+B \cos k x \tag{4}
\end{equation*}
$$

Since the boundary condition at a surface at which there is an infinite potential step is that ψ is zero, we must have

$$
\begin{equation*}
\psi(x=0)=\psi(x=a)=0 \tag{5}
\end{equation*}
$$

The above condition also follows from the fact that since the particle is inside an infinitely deep potential well, it is always confined in the region $0<x<a$ and therefore ψ must vanish for $x<0$ and $x>L$; and for ψ to be continuous, we must have

$$
\begin{equation*}
\psi(x=0)=B=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(x=a)=A \sin k a=0 \tag{7}
\end{equation*}
$$

Thus, either

$$
A=0
$$

or

$$
\begin{equation*}
k a=n \pi ; n=1,2, \ldots \tag{8}
\end{equation*}
$$

The condition $A=0$ leads to the trivial solution of ψ vanishing everywhere, the same is the case for $n=0$. Thus the allowed energy levels are given by

$$
\begin{equation*}
E_{n}=\frac{\pi^{2} n^{2} \hbar^{2}}{2 \mu a^{2}} ; n=1,2,3 \tag{9}
\end{equation*}
$$

The corresponding eigenfunctions are

$$
\left.\begin{array}{rlrl}
\psi_{n} & =\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) & & 0<x<a \tag{10}\\
& =0 & & x<0 \text { and } x>a
\end{array}\right\}
$$

where the factor $\sqrt{2 / a}$ is such that the wave functions form an orthonormal set :

$$
\begin{equation*}
\int_{0}^{a} \psi_{m}^{*}(x) \psi_{n}(x) d x=\delta_{m n} \tag{11}
\end{equation*}
$$

It may be noted that whereas $\psi_{n}(x)$ is continuous everywhere, $d \psi_{n}(x) / d x$ is discontinuous at $x=0$ and at $x=a$. This is because of $V(x)$ becoming infinite at $x=$ 0 and at $x=a$.

Question2: Consider the potential energy variation given by

$$
V(x)= \begin{cases}\infty & x \leq 0 \tag{12}\\ 0 & 0<x<b \\ V_{0} & x>b\end{cases}
$$

Solution 2:

$$
\begin{aligned}
\psi(x) & =A \sin k x \\
& =A \sin k b e^{-\kappa(x-b)}
\end{aligned}
$$

Continuity of $d \psi / d x$ at $x=b$ will give us

$$
\begin{equation*}
-\xi \cot \xi=\sqrt{\alpha^{2}-\xi^{2}} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha^{2}=\frac{2 \mu V_{0} b^{2}}{\hbar^{2}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi^{2}=\frac{2 \mu E b^{2}}{\hbar^{2}} \tag{15}
\end{equation*}
$$

Question3: In continuation of the previous problem, assume

$$
\begin{equation*}
\frac{2 \mu V_{0} b^{2}}{\hbar^{2}}=9 \pi^{2} \tag{16}
\end{equation*}
$$

Calculate the number of bound states and also the corresponding values of $\xi=\sqrt{\frac{2 \mu E b^{2}}{\hbar^{2}}}$.

Solution3: If we numerically solve the equation

$$
\begin{equation*}
-\xi \cot \xi=\sqrt{\alpha^{2}-\xi^{2}} \tag{17}
\end{equation*}
$$

We will find that there are three bound states with

$$
\xi=2.83595,5.64146 \text { and } 8.33877
$$

Question4: Show that the function $\psi(x)=A \exp (-\kappa|x|) ;[\kappa>0]$ satisfies the onedimensional Schrodinger equation corresponding to $V(x)=-S \delta(x)$. Find the value of S and the corresponding value of the energy.
Solution4:

$$
\psi(x)=A \exp (-\kappa|x|) ;[\kappa>0]
$$

Thus

$$
\begin{aligned}
\psi(x) & =A e^{-\kappa x} \text { for } x>0 \\
& =A e^{\kappa x} \text { for } x<0
\end{aligned}
$$

Thus

$$
\begin{aligned}
\psi^{\prime}(x) & =-A \kappa e^{-\kappa x} \text { for } x>0 \\
& =A \kappa e^{\kappa x} \text { for } x<0
\end{aligned}
$$

The function $\psi^{\prime}(x)$ has a discontinuity of $-2 A \kappa$ at $x=0$. Thus

$$
\psi^{\prime \prime}(x)=\kappa^{2} \psi-2 A \kappa \delta(x)
$$

Question5: Solve the one-dimensional Schrodinger equation for

$$
\begin{align*}
V(x) & =-V_{0} & & |x|<\frac{a}{2} \tag{18}\\
& =0 & & |x|>\frac{a}{2}
\end{align*}
$$

and derive the transcendental equations which would determine the energy eigenvalues.
(b) Show that if we let $a \rightarrow 0$ and $V_{0} \rightarrow \infty$ such that

$$
\begin{equation*}
a V_{0} \rightarrow S \tag{19}
\end{equation*}
$$

we would obtain only one bound state with energy as given in the previous problem.
Solution 5: The transcendental equation determining the energy eigenvalues corresponding to symmetric states is given by

$$
\begin{equation*}
\xi \tan \xi=\sqrt{\sigma^{2}-\xi^{2}} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=\left[\frac{\mu}{2 \hbar^{2}}\left(V_{0}+E\right) a^{2}\right]^{1 / 2} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}=\frac{\mu}{2 \hbar^{2}} V_{0} a^{2} \tag{22}
\end{equation*}
$$

Notice that for bound states E is negative with $|E|<V_{0}$. When $V_{0} \rightarrow \infty$ and $a \rightarrow 0$ such that $V_{0} a \rightarrow \mathrm{~S}$ we obtain

$$
\begin{equation*}
\sigma^{2}=\frac{\mu S}{2 \hbar^{2}} a \tag{23}
\end{equation*}
$$

which tends to zero. Thus the root of the equation
$\xi \tan \xi=\sqrt{\sigma^{2}-\xi^{2}}$
will correspond to a very small value of ξ so that we may replace $\tan \xi$ by ξ to obtain

$$
\xi^{2}=\sqrt{\sigma^{2}-\xi^{2}}
$$

or

$$
\xi^{4}+\xi^{2}-\sigma^{2}=0
$$

or

$$
\xi^{2}=\frac{1}{2}\left[-1 \pm \sqrt{1+4 \sigma^{2}}\right]
$$

We neglect the minus sign and make a bionomial expansion to obtain

$$
\xi^{2} \approx \sigma^{2}-\sigma^{4}
$$

or

$$
\frac{\mu}{2 \hbar^{2}}\left[V_{0}+E\right] a^{2} \approx \frac{\mu V_{0} a^{2}}{2 \hbar^{2}}-\frac{\mu^{2} V_{0}{ }^{2} a^{4}}{4 \hbar^{4}}
$$

or

$$
E \approx-\frac{\mu S^{2}}{2 \hbar^{2}}
$$

Question6: Determine the normalized eigenfunctions of the momentum operator

$$
\begin{equation*}
p_{o p}=-i \hbar \frac{d}{d x} \tag{24}
\end{equation*}
$$

and write the orthonormality and completeness conditions.
Solution 6: The eigen value equation for the operator

$$
p_{o p}=-i \hbar \frac{d}{d x}
$$

will be

$$
p_{o p} u_{p}(x)=p u_{p}(x)
$$

where p (on the RHS) is now a number. Thus

$$
-i \hbar \frac{d}{d x} u_{p}(x)=p u_{p}(x)
$$

Simple integration will give us
$u_{p}(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} p x} ;-\infty<p<+\infty$
where the factor $\frac{1}{\sqrt{2 \pi \hbar}}$ is introduced so that

$$
\begin{aligned}
\int_{-\infty}^{+\infty} u_{p}^{*}(x) u_{p^{\prime}}(x) d x & =\frac{1}{2 \pi \hbar} \int_{-\infty}^{+\infty} e^{-\frac{i}{\hbar}\left(p-p^{\prime}\right) x} d x=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i\left(p-p^{\prime}\right) \xi} d \xi \\
& =\delta\left(p-p^{\prime}\right)
\end{aligned}
$$

which is the ortho-normaility condition. Similarly,

$$
\begin{aligned}
\int_{-\infty}^{+\infty} u_{p}^{*}(x) u_{p}\left(x^{\prime}\right) d p & =\frac{1}{2 \pi \hbar} \int_{-\infty}^{+\infty} e^{-\frac{i}{\hbar}\left(x-x^{\prime}\right) p} d p=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i\left(x-x^{\prime}\right) \xi} d \xi \\
& =\delta\left(x-x^{\prime}\right)
\end{aligned}
$$

is the completeness condition.

Question7: In continuation of the previous problem show that the eigenfunctions of the operator

$$
\begin{equation*}
H=\frac{p_{o p}^{2}}{2 \mu}=-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}} \tag{25}
\end{equation*}
$$

are the same as that of the operator
$p_{o p}=-i \hbar \frac{d}{d x}$

Solution7:

$H=\frac{p^{2}}{2 m}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}$
It is easy to see that
$u_{p}(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} p x}$
are eigenfunctions of H. Thus the functions $u_{p}(x)$ are also simultaneous eigenfunctions p_{x}, p_{x}^{2} and H.

